Matrix stiffness regulates microvesicle-induced fibroblast activation
نویسندگان
چکیده
منابع مشابه
Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation
Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underl...
متن کاملMatrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9
Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a highe...
متن کاملMatrix Stiffness Regulates Glial Cell Morphology and Differentiation
MATRIX STIFFNESS REGULATES GLIAL CELL MORPHOLOGY AND DIFFERENTIATION By Mateusz M. Urbanski Advisor: Carmen Melendez-Vasquez Studies from our laboratory have shown that inhibition of non-muscle myosin II (NMII) activity has opposite effects on the formation of myelin by oligodendrocytes (OL), the myelinating glia of the central nervous system (CNS) and Schwann cells (SC), which perform the same...
متن کاملMatrix stiffness regulates migration of human lung fibroblasts
In patients with pulmonary diseases such as idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome, progressive pulmonary fibrosis is caused by dysregulated wound healing via activation of fibroblasts after lung inflammation or severe damage. Migration of fibroblasts toward the fibrotic lesions plays an important role in pulmonary fibrosis. Fibrotic tissue in the lung is m...
متن کاملSubstrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells.
AIM: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. METHODS: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Physiology-Cell Physiology
سال: 2019
ISSN: 0363-6143,1522-1563
DOI: 10.1152/ajpcell.00418.2018